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 Quantum Monte Carlo Methods: accurate, robust and
efficient solution for electronic structure calculations,

especially for correlated systems

« QMC on clusters of multi-core and GPUs

— OpenMP/MPI hybrid
— CUDA/MPI hybrid

* Prospect of QMC algorithms on hybrid architectures
« Conclusions
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Quest for Accurate Quantum Simulations:
harnessing computing power

Hard-core bosons on a CDC 6600 (1974)

Electronic and structure properties of carbon/silicon clusters
on HP 9000/715 cluster and Cray Y-MP (1995)

Coupled Electron-lon Monte Carlo simulations of dense
hydrogen on Linux Clusters (2000)

Diffusion Monte Carlo simulations of liquid water on muilti-
core SMP clusters (2009)
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QMC advantages: accuracy and scalability

e Applicable to a wide range of problems
* Any boundary conditions: molecular and solid-state systems
e Dimensionality: 1D, 2D, and 3D
e Representation: atomistic to model Hamiltonians
e Scale with a few powers in system size: O(N?3)-O(N?)
* Routine calculations of 100s-1000s electrons
 Ample opportunities of parallelism

QMC has enabled accurate predictions of correlated electronic
systems: plasmas to molecules to solids; insulators to highly
correlated metals
 Fundamental High-Pressure Calibration from All-Electron
Quantum Monte Carlo Calculations, Esler et al, PRL (2010)

e Evidence for a first-order liquid-to-liquid transition in high-
pressure hydrogen, Morales et al, PNAS (2010)
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QMCPACK: QMC for HPC

* Implements essential QMC algorithms and best practices
developed over 20yrs+
 Designed for large-scale QMC simulations of molecules,
solids and nanostructures on massively parallel machine
- (OpenMP,CUDA)/MPI Hybrid parallelization
- Object-oriented and generic programming in C++
* Apply software engineering
- Reusable and extensible solution for new development

- Standard open-source libraries and utilities for development,
compilation and execution

- Portable and scalable 1/0O with XML/HDF5
http://gmcpack.cmscc.org
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More recent QMC development*

» Efficient and scalable QMC algorithms
 Fast algorithm for multi-determinant evaluation
* Improved energy minimization in VMC and DMC

Energy of H,O Formation energy of a
E—FE..ou native defect in Si
(mHa) 3461 CSF E;=3.07 (11) eV
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* By QMCPACK developers
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QMC in Action




QMC keeping up with HPC evolution

* Increasing accuracy, computational complexity and
problem size of QMC simulations with HPC evolution

— Model Hamiltonian in 70s, e.g., hard-sphere and LJ
potential

— Homogeneous electron gas in 80s, seminal work by
Ceperley and Alder laid the foundation of DFT

— Atoms, molecules and bulk

— Recently, routine QMC simulations of 1000s of electrons
iIncluding disordered solids

 Shorter time-to-solution = More Science
« Can QMC continue?
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High-performance computing in 2010s

« Petaflop machines have been around, e.g. Jaguar (OLCF)

« Sustainable petaflop machines are coming, e.g., Blue Waters at
NCSAin 2011

Clusters of Shared-memory Processors (SMP)
* Hierarchical memory and communication
« Fast interconnects & various inter-node topology
* Increasing number of cores per SMP node

« 8-32 cores are common; more is expected.
» Fixed memory per core but more aggregated memory per node
* SIMD units: SSE on x86 and VSX on IBM Power 7(P7)

« Large number of threads: simultaneous multi-threading (a.k.a.
hyperthreading), e.g., 128 threads on IBM P7 32-core node
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Basics of QMC

For N-electron system {R} = (I'1, -, TN)

2
Many-body ;8 Z —v2 Z S Y Vew(ri)
Hamiltonian 2 |ri—rj| 5

Find the solution H|¥ >= Fo|¥ > & (U|H |¥) =
Many-body trial wavefunction ¥, (R)
fd3NR Us(R)HY 1 (R)

[&VR o ®)P
L awmc
SV w(R)EL(Ry) _ HU7(R)
ST TSRy T n®)
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Essentials of QMC

Note that
Epr =< Bp >

QMC methods emp

M—oos, Fo<— Er|y,._w

oy

- U1 (R), compact, fast to compute, and accurate
« Efficient stochastic sampling to generate large M

* Variational Monte Carlo (VMC) Variational parameters
Evyc =min(¥r(R; )| H ¥ (R;@)) [T |?

» Diffusion Monte Carlo (DMC)
Epnc = (®o|H|¥7), &= ﬁlim exp PHU, BTy
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Efficiency of QMC

* QMC employs sampling to obtain
Y w®)EL(R) o HUr(R)

< BEp >=

SMym) 0 Ur(R)
withanerrorbar § = —7_ 52 —< F2 > — < Ep >2
VM r g

variance
« Minimize wall-clock time to reach a target error bar

 Efficiency of QMC simulations is high, when
- Variance is small: 0 — 0 as Wy — W  (zero-variance)
Physical insights & improved optimization

- The rate of MC sample generation is high
Parallelism, compact form of V7 & optimized kernels
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HowTo for QMC Calculations

‘ 0 + Initial guess ¥,
v — Compact, easy to evaluate,
VMC
Generate < but close to true ¥
samples - |
] Ur(R) = J({a}) ) |CiD; (¢)D; (¢)
min < Epr >
V7 - Single-particle orbitals [{¢}
Vr = ¥r+AY e.g., KS or HF solution
Converged?>—— « Find {a} & {C} to optimize an
object function: energy and
l‘IlT variation minimization
DMC - Projecting out the ground-state
l by applying a propagator ¢—7H
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Diffusion Monte Carlo

for generation = 1--- Nyc do
for walker =1--- N, do
letR={r;...rx}
for particle i = 1--- N do Drift & Diffusion
setr; =1; + 0
letR = {r;...r,...ryN}
ratio p = ¥ (R) /¥ (R)
if r — r’ is accepted then
update state of a walker
end if
end for{particle}
Compute F; = fI\I!T(R)_/\IIT(R)
Reweight and branch walkers
Update Ey Branch
end for{walker}
end for{generation}
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Characteristics of QMC

DMC pseudo code « Ample opportunity for parallelism
for generation =1 Sy do - Fé)onf?gpurationg i

for walker =1--- N, do .
- K-point
letR:{rl...rN} : .
for particle i = 1--- N do ——> — Walker parallelization
setr; =1; + 0
letR = {r;...r,...ryx}
ratio p = U1 (R') /U7 (R)
if r — r’ is accepted then
update state of a walker
end if
end for{particle}
Compute E;, = HU4(R) /U1 (R)
Reweight and branch walkers
Update Ep
end for{walker}

end for{generation}
£ NCSA




Characteristics of QMC

DMC pseudo code « Ample opportunity for parallelism
for generation = 1~ wc 60 - Fé)onf?gpurationg i

for walker =1--- N, do .
- K-point
letR:{rl...rN} : .
for particle i = 1-- - N do - Walker parallelization
setr; =r;+ 0 ¢= . Freedomin Y7
let R = {r; ... rz ...TN Y} - Compute vs Memory
ratio P = ‘IJT(R )/\IJT (R) S
if r — r’ is accepted then
update state of a walker ¢umm
end if
end for{particle}
Compute E;, = HU7(R) /U7 (R) ¢umm
Reweight and branch walkers
Update Ep
end for{walker}

end for{generation}
£ NCSA

« Computationally demanding
- Ratio, update & Local energy

- Random access




Characteristics of QMC

DMC pseudo code

for generation = 1--- Nyc do
for walker =1--- N, do
let R = {r1 .. .I‘N}
for particles =1--- N do
setr; =1; + 0 Freedom in ¥

letR ={r;...r;...ty} - Compute vs Memory

ratio p = Uy (R')/ W7 (R) . |
if r — 1’ is accepted then Computationally demanding

update state of a walker - Ratio, update & Local energy
end if - Random access

Ample opportunity for parallelism
- Configurations

- K-point

- Walker parallelization

end for{particle}
Compute F; = I:I\IJT(R)/\IJT(R)
Reweight and branch walkers
Update Ep

Communication light but need to

- Global sum
end for{walker} - Load balance
end for{generation}
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Hierarchical Parallelization of QMC

amc orver | For a given N-electron system

1 Multiple instances of correlated
b 6 é configurations: any
 Seeec > 2 Multiple k-points : 1-100

Critical to remove finite-size
effects

(for generation = 1--- Nyc do A
for walker =1 - IV, do 3 Walker parallelization:

N, =10* —10° Multi-core

A walker in cache

Reweight and branch walkers
Update Ep
end for{walker}

_end for{generation} y
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Hierarchical Parallelization of QMC

amc orver | For a given N-electron system

1 Multiple instances of correlated
é 6 ‘ configurations: any
 Seeec > 2 Multiple k-points : 1-100

Critical to remove finite-size

effects
(for generation = 1--- Nyc do A
TPVEILER S oo ey G 3 Walker parallelization:
N, = 10* — 10°
4 N-particle: N — N3
Reweight and branch walkers P
Update Ep GPU
end for{walker} _
end for{generation} And, more parallelism can exposed

Ur(R) =LY, H =3, h;
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Hybrid scheme on SMP

« Maximize performance and reduce the time-to-solution
* MPI task per SMP, better per NUMA node
* Multiple walkers per threads
* Use all the hardware threads available

/ MPI Taslx ®) - -
> m O DMC_ VMG |
Q III - ra s
2 [ S
B|g ensemble data: ’ ° 2
B- spllne table c
w1
0
d m m ‘m m 1(512) 4 (128) 8 (64)
\O w OpenMP Threads (MPI Nodes)
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Performance of Hybird QMC

« DMC scaling is almost perfect , > 90% efficiency

* Limited by collectives for Er,

NY— < NY >

* Open/MPI hybrid helps more than memory footprint
 Collectives scale O(P?) or O(P In P) for P tasks

« Large average number of walkers per MPI task, thus small
fluctuations : easy to balance walkers per node

100

EH Jaguar (2400)
-A—A Hopper (1536)
| A—A Keeneland (30)

180
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QMC on Clusters of SMPs

« Compute-heavy and communication-light nature makes QMC
an easier parallel problem than other problems

« But, as the parallelism increases > 104, many issues arise
— Limited memory per core
— MPI performance : collectives
— |/O : initialization and checkpoint
 MPI/OpenMP provides QMC with simple but effective solutions

— Standards of both commercial and HPC : rely on steady
improvement of the HP infrastructure, compilers and libraries

— Can exploit hierarchy of memory and communication

— Large-shared memory per node : minimize data replications,
while taking advantage of increasing hardware threads
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QMC on GPU

. Why GPU?
— Many threads, high floating-point for walker =1--- N, do E

_ letR={r;...ry}
performance, and bandwidth for particle i = 1-- - N do

— Tera- and peta-scale workstations set T, =1; + 6
— A candidate for the future HPC letR = {r;...r,...ryx}
architecture ratio p = U7 (R')/¥7(R)
if r — r’is accepted then |
update state of a walker
- GPU port of QMCPACK* nd i
— Restructure the algorithm and data end for{particle}
structure to exploit parallelism Compute E;, = HVp(R) /¥4 (R
— MPI for load balancing & Reweight and branch walkers
reductions : high parallel efficiency Update B

end for{walker}
* Esler, Kim, Shulenburger&Ceperley, CISE (2010)
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QMC on GPU

Impact of single precision Speedup: 1 GPU/ 4 cores
T T T T T T 20 T T

| o et
g — FeO (352 electrons)|  _____=
g 11 — Diamond ( 64 electrons) | . -===——
%—11.3»

-11.4}

TR =
0 | [ | %z 64 128 256

Egpy - Ecpy (MHa)

| | r ) l \ ‘ Walkers per GPU

| | Performance data on NCSA
Lincoln cluster
20 50 60 70 80 90 100

Volume (au®) - nVidia G200 GPUs
- Intel Xeon (Harpertown)

CPU: double
GPU: mixed, main kernels in single
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Scaling on multiple GPUs

MC sample/gpu/sec
400
Fixed walkers per GPU

300 == —-h\——: ——————————— ¢

200

100 « 3x3x1 Graphite

— 36 Carbon atoms
O | | | J

# GPUs —> 48 96 144 192 — 144 electrons

e On Keeneland at NICS,
each node has

— Dual Hex-core X5560
— 3 NVIDIA Fermi

nNcsa Y

Target population
© 6144 W 12288 24576




Performance update

MC samples/(GPU,core)/sec MC samples/(GPU,Node)/sec
100

100

“. ~x30 .
80 @
60
10 ¢ 8 9
4
- w ~Xx2 0
A 20
1 1 | 1 1 J 0 | | | | )
0 200 400 600 800 1000 0 200 400 600 800 1000

¢ NVIDIA Fermi (Keeneland)
@ Intel Westmere (Keeneland)

MC samples/sec
AMD MagnyCours (Hopper) P

= figure of merit for QMC
*4x4x1 graphite, 256 electrons
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Computational challenges for QMC

QMC positioned to harness the increasing computing powers
of current and next generation of HPC

» Sufficient parallelism over walkers on current HPC systems
— Petaflop multi-core systems
— Teraflop GPU systems

* Alot of new sciences on petaflop heterogeneous systems,
iIncluding Titan

Reduce time per walker per DMC step: O(N?)-O(N3)

* Fine-level parallelisms: light-weight threads, nested tasks

* Optimizations on multi-core chips: random-access of read-
only data, private/shared cache reuse on NUMA systems

 Utilizing all the power of heterogeneous nodes
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Room for improvement

for generation = 1--- Nyc do o
for walker = 1--- N, do \IJT(R) = 1 Wy
letR:{rl...rN} ﬁzzkﬁk

for particlei=1---Ndo node

setr;:rﬁ—é
' ! T Psi<T>::ratio(int i
letR ={r;...r,...ryx} { ( )

ratio p = U1 (R) /U (R) €—— T r(1.0);

r x= Z[k]->ratio(P,1i);
update state of a walker return r:
end if }

end for{particle}
Compute Ej, = fI\DT(R)/\IJT(R)<—— T Hamiltonian<T>::evaluate()

. {
Reweight and branch walkers T eloc=0.0:
Update Er for(int k=0; k<H.size(); ++k)
end for{walker} eloc += H[k]->evaluate(P);
, return eloc
end for{generation} }
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Core Computations

For each walker, All about Ut

letR={r;...ry}

for particles =1--- N do Quantum
scft r,=r;+0 0=r+7Viln¥r (50
letR':{rl...r;...rN} lI!T(I'1~~I';~~rN)
ratio p = U, (R) /¥ (R) Ur(ry - T; - TN)
if r — r’ is accepted then ,
update state of a walker Wr «— \IJT(I'l D IR I'N)
end if

end for{particle}

Compute £, = HU7(R)/¥7R)  f{R},VIn¥7,ViIn¥yp)

Use U =1LV, wedp In¥p =) " InY,

N




Slater-Jastrow for Electrons

Ur(R) = et N "C;Dl(¢)D{(¢) N=N"+N

Anti-symmetric function
(Pauli principle)

J1=Z;u1(|rv:—rl|) ¢1(I‘1) ‘f’l(rNT)
z Dgzdet ; : :

Correlation (Jastrow)

N ions

oni(r1) ... Onr(ryr)
™ Single-particle orbitals

Af
Jo=» us(|ri — rj))

1#]

« Computational complexity per MC step

. Evaluation {9} O(Nstpo)
* Determinant evaluation (’)(NS)
« Jastrow evaluation (’)(N) - O(N3)
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Single-particle orbitals

 Linear combinations of basis functions ¢
(/

Nspo x NpyOp(P)

|
]
Q.
Ly

« Typically the solutions of simpler theories, i.e. (/g &{(I)}
from Hartree-Fock or DFT calculations

« SPO can take various forms

SPO Type

Molecular orbitals (’)(N) Medium-High Low

Plane waves (’)(N) High Medium
B-sgli\ne Fixed Low High

Best solution for large-scale QMC on SMPs
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Analysis on current CPU & GPU

(a) CPU

QMCPACK achieves high

efficiency by amortizing
threads & memory

\\‘\ ‘\ As the system size and

complexity grows, each
update ratlo Phase 2-body 1-body Other

kernel takes longer
x j Can afford overhead for
(b) GPU
B-spline

task-based parallelism
But, difficult to balance the

load among tasks: device
and problem dependent
Breakup of compute kernels

Dist

B-spline |
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Strategy to further accelerate QMC

Task-based parallelism with smart allocators on
heterogeneous nodes

Exploit generic programming
— Specialization on devices: allocators, containers, algorithms

— Hide low-level programming but optimize the kernels with
the best option(s) available

— Auto-tuning of SIMD kernels

Stick to standards: C++, OpenMP, Pthreads and MPI
— Heavy lifting by the compilers
— Vendor optimized communication and numerical libraries

Cope with the changes
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Conclusions

 QMC has kept up with the HPC evolution and will continue
Improving predictive powers in physics, materials and

chemistry

v’ Clusters of multi- and many-core SMP
v’ Clusters of GPU
£ Clusters of hybrid

o/ What is next
* More to be done improve science productivity

— Reduce impacts of application-level, software and hardware
faults: Algorithms for robust and fault-tolerant simulations

— Faster off-node communication and 1/O
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